Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal.
نویسندگان
چکیده
Calcium channels of the P/Q subtype mediate transmitter release at the neuromuscular junction and at many central synapses, such as the calyx of Held. Transgenic mice in which alpha1A channels are ablated provide a powerful tool with which to test compensatory mechanisms at the synapse and to explore mechanisms of presynaptic regulation associated with expression of P/Q channels. Using the calyx of Held preparation from the knock-out (KO) mice, we show here that N-type channels functionally compensate for the absence of P/Q subunits at the calyx and evoke giant synaptic currents [approximately two-thirds of the magnitude of wild-type (WT) responses]. However, although evoked paired-pulse facilitation is prominent in WT, this facilitation is greatly diminished in the KO. In addition, direct recording of presynaptic calcium currents revealed that the major functional difference was the absence of calcium-dependent facilitation at the calyx in the P/Q KO animals. We conclude that one physiological function of P/Q channels is to provide additional facilitatory drive, so contributing to maintenance of transmission as vesicles are depleted during high throughput synaptic transmission.
منابع مشابه
Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses.
We studied how Ca2+ influx through different subtypes of Ca2+ channels couples to release at a calyx-type terminal in the rat medial nucleus of the trapezoid body by simultaneously measuring the presynaptic Ca2+ influx evoked by a single action potential and the EPSC. Application of subtype-specific toxins showed that Ca2+ channels of the P/Q-, N-, and R-type controlled glutamate release at a s...
متن کاملBrain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacit...
متن کاملFine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins.
Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term syna...
متن کاملThe effects of eight weeks resistance training on α -1A protein of pre-synaptic P-Q-type calcium channels in FHL and soleus muscles of rats
The purpose of this study was to investigate the effects of 8 weeks resistance training (RT) on α -1A protein of pre-synaptic P-Q-type Calcium Channels in FHL and soleus muscles of rats. 16 male wistar rats provided from razi institute, randomly divided to 2 groups (Control-Sham; n=8 and Resistance Training; n= 8). Training group conducted 8 weeks (5 session/week) resistance program on spe...
متن کاملRegulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 46 شماره
صفحات -
تاریخ انتشار 2004